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Abstract 
Image refocusing from a single image is an 
underdetermined problem.  Out-of-focus 
images of a scene do not capture high-
frequency details that should appear in a 
focused image.  In this paper, we describe a 
system for incorporating additional, focused 
images into the refocusing task in order to 
inform high-frequency detail.  We use the 
additional inputs to determine a mapping 
from low-frequency to high-frequency 
features, and also to define a space of 
natural images to which we constrain our 
output.  We find that the synthesized image 
accurately reproduces high-frequency 
textures from the scene when the focused 
inputs capture the scene from the same 
view, but achieves mixed results otherwise. 

 
1. Introduction   
 
Given an image in which some object appears out of 
focus, we would like to synthesize an image in which 
that object appears in focus.  Since the image in a 
lens camera of an object at a given depth is the 
convolution of a pinhole image of that object by the 
point spread function (PSF) of the lens, a popular 
method for recovering the sharp image is 
deconvolution by the PSF.  In deconvolution, blur is 
modeled by the equation  
 

 

! 

f * g = h , (1) 
 
where f is the sharp image and g is the PSF.  The 
output image is some solution for f  given g and h. 
 
However, the modulation transfer function (the 
magnitude of the Fourier transform of the PSF) of a 
typical photography lens falls to zero at a 
significantly lower frequency when the image is not 
in focus than when it is in focus [1].  Thus a band of 
spatial frequencies that should appear in a sharp 
image of the object is not present in the input image.  
Refocusing from a single image is therefore an 
underdetermined problem, and as a result, 
deconvolution algorithms are diverse and highly 
tailored to their respective applications. 
 
We present a system that incorporates additional, 
focused images of the target object in order to inform 

the high-frequency detail of the synthesized image.  
Following [2] and [3], we use the additional inputs to 
define a space of natural focused images to which we 
constrain our synthesized image.  As in those papers, 
we implement this constraint as a library of local 
patches appearing in the input images, requiring that 
every patch in the synthesized image resembles some 
patch in the library. 
 
Our system further differs from deconvolution in that 
we do not generate candidates for the synthesized 
image by finding global solutions for (1).  Instead, we 
find for each local patch in the unfocused image a set 
of patches from our focused patch library that are 
likely to resemble that patch when convolved by the 
PSF.  This is analogous to the local approach toward 
super-resolution in [3], in which the set of high-
resolution patches which downsample to a given low-
resolution patch in the input image are considered.  
From this set of focused patches we derive a list of 
candidate values and corresponding probabilities for 
the center pixel, which can then be selected from 
according to the natural image constraint. 
 
The primary advantage of our refocusing method 
over deconvolution methods is that it does not 
assume a particular strategy for recovering the lost 
high-frequency detail from the misfocused image, but 
instead lets a probabilistic mapping from low-
frequency features to high-frequency features be 
specified by the additional inputs.  Our method 
should thus retain greater generality across 
applications than any one deconvolution algorithm.  
 
In section 2, we describe the components of our 
method in detail.  In section 3, we compare the 
results produced by different variations of our 
system.  In section 4, we evaluate the results of our 
best system.  In section 5, we conclude the paper and 
suggest future work. 
 
2. System 
 
In the previous section, we described two 
probabilistic constraints on the synthesized image: 
our mapping of blurred to sharp neighborhoods, and 
our natural image constraint.  Ideally, we would like 
to output the image which best satisfies the 
constraints across the entire image.  In practice, we 
reduce the dimensionality of our search space 
considerably by instead considering pixels 
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individually.  Each constraint is therefore represented 
as a probability distribution over values of a single 
pixel, and we seek to maximize the product of these 
probabilities for each pixel value assignment.  We 
address the issue of inter-pixel dependencies and the 
order of pixel value assignments toward the end of 
this section.  
 
Since we wish to avoid calculating both probabilities 
for each value for each pixel, we consider the 
constraints in order, evaluating the second constraint 
for only those values determined to be most probable 
by the first. 
 
In formally defining these constraints, we use the 
symbols defined in Table 1. 
 
Symbol Meaning 

U Misfocused input image 
V Set of patches from focused input images 
W Synthesized image 
G Input PSF 

||a – b||2 Sum squared difference of a and b 
N(I, x, y) Neighborhood of pixel (x, y) in image I 

V[c] Subset of V which have center value c 
Blur(v) Blurred version of patch v 

Table 1. Table of symbols. 

 
2.1. The Image-Scene Constraint 
 
In Section 1, we describe our method as finding a 
probabilistic mapping from low-frequency features to 
high-frequency features.  Speaking more precisely, 
we maintain a mapping from misfocused image 
patches to focused patches that resemble them if 
blurred.  This approach is an instance of Image/Scene 
training, where the observed image variable is a 
known function of the hidden scene variable.  The 
function may be one that loses information, as in 
downsampling [3].  Because misfocus is such a 
function, the mapping is one-to-many, and can be 
represented probabilistically. 
 
Note that our image-scene training task differs 
slightly from that of super-resolution.  Whereas in 
downsampling the value of a low-resolution image 
patch is a precise function of the corresponding patch 
in the high-resolution scene, patches in a misfocused 
image receive light from pixels that fall outside of 
that patch in the focused scene.  Our function from 
scene to image therefore has a probabilistic 
component itself.  
 
We implement the image-scene mapping by a 
nearest-neighbor search in a library V of focused 

patches, where the query is our misfocused image 
patch.  For each patch v ∈ V we keep a blurred 
version Blur(v), being the same rectangle extracted 
from the same input image convolved by G.  The 
patch u in U maps to the focused patch v in V with a 
probability that is a function of the sum squared 
difference between u and Blur(v).  Taking the 
probability of the value c for the pixel (x, y) in W to 
be the probability of the most probable mapping from 
N(U, x, y) to a patch in V with center pixel value c, 
we define 
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Pimage (Wx,y ) = exp("# min
v$V [Wx,y ]

Blur(v) " N(U,x,y)
2
). 

 
To generate the list of best candidates for pixel (x, y) 
according to the image-scene constraint, we simply 
compare N(U, x, y) against all blurred patches in V 
and select the center pixel values of the nearest 
matches. 
 
2.2. The Scene Texture Constraint 
 
Having generated a list of candidate values for each 
pixel in W, we choose among those values by 
constraining W to lie in the space of natural images.  
That is, we require that each patch in W resemble 
some patch in V.  As with the image-scene constraint, 
we define the scene texture constraint by a 
probability distribution over values of a pixel,  
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Ptexture(Wx,y ) = exp("#min
v$V

v " N(W ',x,y)
2
), 

 
where the image W’ is the result of assigning Wx,y. 
 
This neighborhood-based definition of the constraint 
implies inter-pixel dependencies in the synthesized 
image.  If we use a symmetrical neighborhood – one 
in which for some pixel (a, b) in N(W, x, y), (x, y) is 
in N(W, a, b) – then circular dependencies exist [2], 
and we are forced at some point in synthesizing W to 
evaluate Ptexture for pixels whose neighborhoods 
contain unassigned values.  Alternatively, we may 
choose a causal neighborhood, which only contains 
pixels that precede the center pixel in the order of 
assignment.  Examples of causal neighborhoods 
under different assignment orders are given in Figure 
1.  Perhaps because of the smaller pixel-wise 
footprint, our results using causal neighborhoods 
were poor.  We therefore used a symmetrical 
neighborhood, taking the most probable candidate 
values given by the image-scene constraint as initial 
values for W.  In the next section, we consider which 
order of assignment best complements our choice of 
a symmetrical neighborhood. 
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Figure 1. Causal 5x5 neighborhoods under different 
assignment orders: the fixed neighborhood (a) of 
scanline-order assignment, and typical 
neighborhoods (b), (c), and (d) in confidence-order 
assignment.  Black pixels are those not included in 
the neighborhood.   

2.3. Order of Assignment 
 
Recent projects in image synthesis with 
neighborhood-based constraints have achieved results 
using symmetrical neighborhoods with a scanline or 
random assignment order, beginning from initial 
pixel value estimates and assigning each pixel more 
than once in multiple successive iterations [2, 6].  In 
[6], each pixel is weighted by confidence, such that it 
bears more strongly on neighborhood comparisons as 
it converges to its most probable value.   
 
In multi-resolution texture synthesis – where the 
neighborhood used in synthesizing a given resolution 
level may extend into lower, already fully assigned 
levels – random order [5] and scanline order [4] 
assignment are successful even with a causal 
neighborhood.  Because this synthesis begins with 
the lowest-resolution level, which is given, and 
proceeds upward, we might say that these algorithms 
assign pixels in confidence order.  In conjunction 
with the causal neighborhood, this order ensures that 
the value of any pixel is determined only by pixels 
with equal or greater confidence. 
 
We hypothesize that confidence-order assignment is 
also beneficial under a symmetrical neighborhood.   
However, our image space differs from the multi-
resolution pyramid in that there is no obvious 
gradient from more confident to less confident pixels.  
The best notion of pixel confidence we are able to 
establish prior to assigning any pixels is the 
probability Pimage of the most probable candidate 
value given by the image-scene constraint, 
normalized over all candidates.  A map of this 
confidence metric over a sample input image is 
presented in Figure 2. 
 
In general, the pixels of greatest confidence tend to 
lie in the areas of greatest contrast in the misfocused 
input image.  These correspond to neighborhoods in 
the misfocused input image that resemble only very 
few neighborhoods in the blurred focused input 

images, and thus map very probably to a select few 
candidate values.  Neighborhoods in large, uniformly 
colored regions resemble many patches in the blurred 
focused images, and thus map to many candidate 
values with roughly equal probability, resulting in 
low confidence. 
 
Rather than use these raw pixel confidence values to 
determine the pixel assignment order, we consider 
that we would like to give precedence to pixels with 
high confidence values in their neighborhoods in W, 
since the value of a pixel is as much determined by 
the scene texture constraint as by the image-scene 
constraint.  We therefore convolve the pixel 
confidence map by a 5 x 5 square to get a 
neighborhood confidence map, wherein the value of 
any pixel is the average pixel confidence across a 5 x 
5 neighborhood around it.  Sorting the list of pixels in 
W by this neighborhood confidence attribute yields 
our order of assignment. 
 
3. Evaluating the Components 
 
In order to determine the contribution of the 
components described in the previous section to the 
performance of the overall system, we compared the 
output of several variations of the system.  For these 
evaluations we used the photograph shown in Figure 
2(a) as our misfocused input image, and an in-focus 
photograph taken from the same view as our lone 
focused input image.  Along with each input image 
we provide the program with a hand-made bitmask 
defining the boundary of the object to be refocused.  
Refocused values are synthesized only for the pixels 
within this boundary in the misfocused input, and our 
focused patch library is built only from the pixels 
within this boundary in the focused input. 
 
In order to acquire an accurate PSF for the 
misfocused image, we photographed a simulated 
point light source placed at the same depth as the 
object, using identical focus and aperture settings.  
The point light source was simulated using a 
fluorescent desk lamp positioned behind a pinhole 
mask with a diffuser between.  Since the ostensibly 
focused image of the light source was not in fact a 
point, but instead a few pixels in diameter, we took 
our actual PSF to be the function which when 
convolved by the focused image of the light source 
most closely resembled the misfocused image of the 
light source, constraining that PSF to be a disk with 
integer pixel diameter. 
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(a) (b) (c) 

Figure 2. Determining  a confidence ordering over pixels: (a) the misfocused input image, (b) a map of pixel 
confidence over the synthesized image, and (c) a map of neighborhood confidence.  In (b) and (c), brighter values 
correspond to higher confidence.  The confidence maps suggest an assignment ordering that begins at regions of 
high contrast and radiates outward

 
3.1. The Image-Scene Constraint 
 
We first measured the performance of the image-
scene constraint alone.  In this variation of the 
system, the value of each pixel in the synthesized 
image is the most probable candidate for that pixel as 
defined by Pimage in section 2.1.  This yields the 
image shown in Figure 3(a). 
 
Unsurprisingly, the performance of this variation in a 
given region corresponds to the confidence of the 
pixels in that region as described in section 2.3.  In 
regions of high confidence, where a given 
neighborhood maps with high probability to a few 
select neighborhoods, the synthesized image very 
accurately reproduces the texture of the focused input 
image.  These regions of high confidence generally 
correspond to regions of high contrast.   
 
In more uniform regions, where each neighborhood 
in the misfocused input image may map with roughly 
uniform probability to a large number of patches in 
the focused input, the texture of the synthesized 
image appears noisy and does not resemble the real 
texture of the object. 
 
3.2. The Scene Texture Constraint 
 
Figure 3(b) shows the results of incorporating the 
scene texture constraint into the variation of the 
previous subsection.  In this variation, we calculated 
Ptexture for each of the top 20 candidates given by the 
image-scene constraint.  We then selected the value v 
in the candidates that maximized 
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Pimage (v)Ptexture (v). 

 
We performed this selection for each pixel of the 
synthesized image in scanline order, using a causal 
neighborhood in calculating Ptexture. 
 
The new constraint succeeds in eliminating the noisy 
texture that appeared in the low-contrast regions of 
the synthesized image when using the image-scene 
constraint only.  However, the smooth, grain-free 
texture that it tends to render instead is also not 
correct.  Furthermore, textures and colors appear to 
“bleed” out of their correct regions.  In some cases, 
this causes small features on the target object to 
disappear entirely. 
 
The bleeding effect may be accounted for by the 
relative weights of the constraints, which are 
determined by the tuning factor λ used in calculating 
Pimage and Ptexture.  In a scanline ordering, excessive 
weight on the scene texture constraint causes textures 
currently established along the scanline to be 
propagated in the direction of the scan farther than 
should be allowed by the image-scene constraint.  
However, we do not experiment with different 
weights in this paper.  Instead, in the next section, we 
consider how the bleeding effect may be mitigated by 
assigning pixels in order of confidence. 
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(a) (b) (c) 

Figure 3. Performance of variations of the system: (a) image-scene constraint only, (b) incorporating the scene 
texture constraint with scanline-order assignment, and (c) incorporating confidence-order assignment.   

 

  
(a) (b) 

Figure 4. Performance of the system using both constraints and confidence order assignment: (a) the misfocused 
input image, and (b) the synthesized image. 
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Figure 5. Performance of our best system given non-ideal inputs.  Given the focused input image (a) with perturbed 
view of the target object, the system produces the synthesized image (b). 

 
 

3.3 Confidence-Order Assignment 
 
Figure 3(c) shows the results of altering the variation 
of the previous subsection to assign pixels in 
confidence order as described in section 2.3. 
 
The new assignment order largely mitigates the 
texture bleeding introduced by the previous variation.  
While some textures do encroach into other regions 
slightly, no features of the object are seen to 
disappear entirely as with scanline ordering.  The 
textures generated by this variation also resemble the 
true texture of the object more closely than those 
generated by the previous variation. 
 
Figure 4 shows another image refocused using this 
variation of the system. 
 
4. Evaluating the System 
 
We have demonstrated in the previous section that 
the variation of our system that incorporates both the 
image-scene constraint and the scene texture 
constraint and assigns the synthesized pixels in 
confidence order produces the most desirable results 

given an ideal focused input image.  In this section, 
we evaluate the performance of that best system for 
non-ideal inputs.  Specifically, whereas our focused 
input image in the previous section was taken from 
precisely the same view as the misfocused input 
image, we now consider the case of a focused input 
taken from a perturbed view.  The results of using 
such an input with the misfocused images of the 
previous section are shown in Figure 5. 
 
The performance of our system under these 
conditions clearly falls short of the performance on 
ideal inputs as some regions of the synthesized 
regions take on incorrect textures while others take 
on incorrect overall color as well.  As a result, some 
features of the object disappear.  These results 
suggest that our method for mapping neighborhoods 
in the misfocused image to neighborhoods in the 
blurred focused image is not robust to changes in the 
viewpoint of the focused image.  This may result in a 
poor selection of candidate values for the synthesized 
pixels, such that no good image exists in the space of 
candidate images, and the performance of the system 
as a whole is thusly limited. 
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5. Conclusions and Future Work 
 
We have stated it as the goal of this paper to 
demonstrate a method for image refocusing which is 
both more generally applicable than deconvolution 
algorithms and better able to take advantage of 
additional information about high-frequency detail.   
 
Our method indeed achieves the latter in the broadest 
sense, as we have demonstrated the ability of our 
system to replicate the high-frequency details of 
focused input images convincingly in some regions 
of synthesized images.  Traditional deconvolution 
algorithms do not incorporate focused images at all.  
We have also seen, however, that the system is not 
able to use focused images effectively that are not 
taken from the same view as the misfocused image.  
Thus the utility of our refocusing method is currently 
limited to situations where we already have a suitable 
focused image from the desired view, which makes it 
less applicable than most deconvolution algorithms. 
 
We stand to improve the performance and generality 
of the method by exploring various parameters of the 
method that this paper does not, including 
neighborhood size, our choice of pixel confidence 
metric, and the relative weights of our constraints.  
However, the computational cost of running our 
system makes it difficult to experiment with all of the 
parameters we would like to.  Our current best 
method takes 5 to 10 hours to synthesize a 300 x 300 
image using 20 candidate values per pixel on a vine 
box.  We therefore propose future work that aims at 
increasing the efficiency of our system. 
 
5.1. Intelligent Candidate Selection 
 
In the experiments presented in this paper, we 
considered only the 20 most probable candidates 
generated by the image-scene constraint as possible 
values for the pixel.  This is a very small fraction of 
the total number of candidates, which may be as great 
as the number of pixels in the focused input images.  
Moreover, when our confidence in the pixel is low, 
values outside of the top 20 may have only 
marginally lower probabilities than those that make 
the cut.  While it is necessary to restrict the number 
of candidates we consider to keep the system 
computationally feasible, there may be a more 
intelligent approach to selecting those candidates. 
 
Such an approach might address the fact that our 
current system considers each value in RGB space as 
a separate candidate.  Thus if we have a candidate 
value (0, 0, 1) with probability 0.3, a candidate (0, 1, 
0) with probability 0.3, and a candidate (255, 255, 

255) with probability 0.4, then “white” is regarded as 
the most probable candidate, whereas the true value 
is probably very close to “black”.   
 
A more sensible procedure for candidate selection 
might, for example, perform k-means clustering in 
RGB space on the entire set of candidate values, with 
each value weighted by its probability.  One could set 
k = 20 and take the final means as candidate values. 
 
5.2. Accelerated Neighborhood Search 
 
The run time of our system is dominated by 
neighborhood searches, which are nearest-neighbor 
searches in 75 dimensions (5 x 5 patches in 3 
channels).  Our current implementation is exhaustive 
linear search through the patch library, which runs in 
time O(N) on a library of N patches.  However, 
approximate nearest-neighbor algorithms exist which 
after a reasonable pre-processing step can perform 
this search in time O(log N), and which have 
performed satisfactorily in texture synthesis [4] and 
image synthesis [2] . 
 
The obstacle to implementing our current system on 
top of these algorithms during experimentation was 
that we required the ability to locate the nearest 
neighbor in an arbitrary subset of the 75 dimensions, 
in order to support arbitrarily shaped causal 
neighborhoods.  Now that we have identified a best 
system that uses symmetrical neighborhoods, any 
ANN or vector quantization algorithm may be used 
for neighborhood search. 
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