

Image Synthesis Considerations for Image Refocusing

Thomas Brow TEBROW@STANFORD.EDU

Abstract
Image refocusing from a single image is an
underdetermined problem. Out-of-focus
images of a scene do not capture high-
frequency details that should appear in a
focused image. In this paper, we describe a
system for incorporating additional, focused
images into the refocusing task in order to
inform high-frequency detail. We use the
additional inputs to determine a mapping
from low-frequency to high-frequency
features, and also to define a space of
natural images to which we constrain our
output. We find that the synthesized image
accurately reproduces high-frequency
textures from the scene when the focused
inputs capture the scene from the same
view, but achieves mixed results otherwise.

1. Introduction

Given an image in which some object appears out of
focus, we would like to synthesize an image in which
that object appears in focus. Since the image in a
lens camera of an object at a given depth is the
convolution of a pinhole image of that object by the
point spread function (PSF) of the lens, a popular
method for recovering the sharp image is
deconvolution by the PSF. In deconvolution, blur is
modeled by the equation

!

f * g = h , (1)

where f is the sharp image and g is the PSF. The
output image is some solution for f given g and h.

However, the modulation transfer function (the
magnitude of the Fourier transform of the PSF) of a
typical photography lens falls to zero at a
significantly lower frequency when the image is not
in focus than when it is in focus [1]. Thus a band of
spatial frequencies that should appear in a sharp
image of the object is not present in the input image.
Refocusing from a single image is therefore an
underdetermined problem, and as a result,
deconvolution algorithms are diverse and highly
tailored to their respective applications.

We present a system that incorporates additional,
focused images of the target object in order to inform

the high-frequency detail of the synthesized image.
Following [2] and [3], we use the additional inputs to
define a space of natural focused images to which we
constrain our synthesized image. As in those papers,
we implement this constraint as a library of local
patches appearing in the input images, requiring that
every patch in the synthesized image resembles some
patch in the library.

Our system further differs from deconvolution in that
we do not generate candidates for the synthesized
image by finding global solutions for (1). Instead, we
find for each local patch in the unfocused image a set
of patches from our focused patch library that are
likely to resemble that patch when convolved by the
PSF. This is analogous to the local approach toward
super-resolution in [3], in which the set of high-
resolution patches which downsample to a given low-
resolution patch in the input image are considered.
From this set of focused patches we derive a list of
candidate values and corresponding probabilities for
the center pixel, which can then be selected from
according to the natural image constraint.

The primary advantage of our refocusing method
over deconvolution methods is that it does not
assume a particular strategy for recovering the lost
high-frequency detail from the misfocused image, but
instead lets a probabilistic mapping from low-
frequency features to high-frequency features be
specified by the additional inputs. Our method
should thus retain greater generality across
applications than any one deconvolution algorithm.

In section 2, we describe the components of our
method in detail. In section 3, we compare the
results produced by different variations of our
system. In section 4, we evaluate the results of our
best system. In section 5, we conclude the paper and
suggest future work.

2. System

In the previous section, we described two
probabilistic constraints on the synthesized image:
our mapping of blurred to sharp neighborhoods, and
our natural image constraint. Ideally, we would like
to output the image which best satisfies the
constraints across the entire image. In practice, we
reduce the dimensionality of our search space
considerably by instead considering pixels

Image Synthesis Considerations for Image Refocusing

individually. Each constraint is therefore represented
as a probability distribution over values of a single
pixel, and we seek to maximize the product of these
probabilities for each pixel value assignment. We
address the issue of inter-pixel dependencies and the
order of pixel value assignments toward the end of
this section.

Since we wish to avoid calculating both probabilities
for each value for each pixel, we consider the
constraints in order, evaluating the second constraint
for only those values determined to be most probable
by the first.

In formally defining these constraints, we use the
symbols defined in Table 1.

Symbol Meaning

U Misfocused input image
V Set of patches from focused input images
W Synthesized image
G Input PSF

||a – b||2 Sum squared difference of a and b
N(I, x, y) Neighborhood of pixel (x, y) in image I

V[c] Subset of V which have center value c
Blur(v) Blurred version of patch v

Table 1. Table of symbols.

2.1. The Image-Scene Constraint

In Section 1, we describe our method as finding a
probabilistic mapping from low-frequency features to
high-frequency features. Speaking more precisely,
we maintain a mapping from misfocused image
patches to focused patches that resemble them if
blurred. This approach is an instance of Image/Scene
training, where the observed image variable is a
known function of the hidden scene variable. The
function may be one that loses information, as in
downsampling [3]. Because misfocus is such a
function, the mapping is one-to-many, and can be
represented probabilistically.

Note that our image-scene training task differs
slightly from that of super-resolution. Whereas in
downsampling the value of a low-resolution image
patch is a precise function of the corresponding patch
in the high-resolution scene, patches in a misfocused
image receive light from pixels that fall outside of
that patch in the focused scene. Our function from
scene to image therefore has a probabilistic
component itself.

We implement the image-scene mapping by a
nearest-neighbor search in a library V of focused

patches, where the query is our misfocused image
patch. For each patch v ∈ V we keep a blurred
version Blur(v), being the same rectangle extracted
from the same input image convolved by G. The
patch u in U maps to the focused patch v in V with a
probability that is a function of the sum squared
difference between u and Blur(v). Taking the
probability of the value c for the pixel (x, y) in W to
be the probability of the most probable mapping from
N(U, x, y) to a patch in V with center pixel value c,
we define

!

Pimage (Wx,y) = exp("# min
v$V [Wx,y]

Blur(v) " N(U,x,y)
2
).

To generate the list of best candidates for pixel (x, y)
according to the image-scene constraint, we simply
compare N(U, x, y) against all blurred patches in V
and select the center pixel values of the nearest
matches.

2.2. The Scene Texture Constraint

Having generated a list of candidate values for each
pixel in W, we choose among those values by
constraining W to lie in the space of natural images.
That is, we require that each patch in W resemble
some patch in V. As with the image-scene constraint,
we define the scene texture constraint by a
probability distribution over values of a pixel,

!

Ptexture(Wx,y) = exp("#min
v$V

v " N(W ',x,y)
2
),

where the image W’ is the result of assigning Wx,y.

This neighborhood-based definition of the constraint
implies inter-pixel dependencies in the synthesized
image. If we use a symmetrical neighborhood – one
in which for some pixel (a, b) in N(W, x, y), (x, y) is
in N(W, a, b) – then circular dependencies exist [2],
and we are forced at some point in synthesizing W to
evaluate Ptexture for pixels whose neighborhoods
contain unassigned values. Alternatively, we may
choose a causal neighborhood, which only contains
pixels that precede the center pixel in the order of
assignment. Examples of causal neighborhoods
under different assignment orders are given in Figure
1. Perhaps because of the smaller pixel-wise
footprint, our results using causal neighborhoods
were poor. We therefore used a symmetrical
neighborhood, taking the most probable candidate
values given by the image-scene constraint as initial
values for W. In the next section, we consider which
order of assignment best complements our choice of
a symmetrical neighborhood.

Image Synthesis Considerations for Image Refocusing

Figure 1. Causal 5x5 neighborhoods under different
assignment orders: the fixed neighborhood (a) of
scanline-order assignment, and typical
neighborhoods (b), (c), and (d) in confidence-order
assignment. Black pixels are those not included in
the neighborhood.

2.3. Order of Assignment

Recent projects in image synthesis with
neighborhood-based constraints have achieved results
using symmetrical neighborhoods with a scanline or
random assignment order, beginning from initial
pixel value estimates and assigning each pixel more
than once in multiple successive iterations [2, 6]. In
[6], each pixel is weighted by confidence, such that it
bears more strongly on neighborhood comparisons as
it converges to its most probable value.

In multi-resolution texture synthesis – where the
neighborhood used in synthesizing a given resolution
level may extend into lower, already fully assigned
levels – random order [5] and scanline order [4]
assignment are successful even with a causal
neighborhood. Because this synthesis begins with
the lowest-resolution level, which is given, and
proceeds upward, we might say that these algorithms
assign pixels in confidence order. In conjunction
with the causal neighborhood, this order ensures that
the value of any pixel is determined only by pixels
with equal or greater confidence.

We hypothesize that confidence-order assignment is
also beneficial under a symmetrical neighborhood.
However, our image space differs from the multi-
resolution pyramid in that there is no obvious
gradient from more confident to less confident pixels.
The best notion of pixel confidence we are able to
establish prior to assigning any pixels is the
probability Pimage of the most probable candidate
value given by the image-scene constraint,
normalized over all candidates. A map of this
confidence metric over a sample input image is
presented in Figure 2.

In general, the pixels of greatest confidence tend to
lie in the areas of greatest contrast in the misfocused
input image. These correspond to neighborhoods in
the misfocused input image that resemble only very
few neighborhoods in the blurred focused input

images, and thus map very probably to a select few
candidate values. Neighborhoods in large, uniformly
colored regions resemble many patches in the blurred
focused images, and thus map to many candidate
values with roughly equal probability, resulting in
low confidence.

Rather than use these raw pixel confidence values to
determine the pixel assignment order, we consider
that we would like to give precedence to pixels with
high confidence values in their neighborhoods in W,
since the value of a pixel is as much determined by
the scene texture constraint as by the image-scene
constraint. We therefore convolve the pixel
confidence map by a 5 x 5 square to get a
neighborhood confidence map, wherein the value of
any pixel is the average pixel confidence across a 5 x
5 neighborhood around it. Sorting the list of pixels in
W by this neighborhood confidence attribute yields
our order of assignment.

3. Evaluating the Components

In order to determine the contribution of the
components described in the previous section to the
performance of the overall system, we compared the
output of several variations of the system. For these
evaluations we used the photograph shown in Figure
2(a) as our misfocused input image, and an in-focus
photograph taken from the same view as our lone
focused input image. Along with each input image
we provide the program with a hand-made bitmask
defining the boundary of the object to be refocused.
Refocused values are synthesized only for the pixels
within this boundary in the misfocused input, and our
focused patch library is built only from the pixels
within this boundary in the focused input.

In order to acquire an accurate PSF for the
misfocused image, we photographed a simulated
point light source placed at the same depth as the
object, using identical focus and aperture settings.
The point light source was simulated using a
fluorescent desk lamp positioned behind a pinhole
mask with a diffuser between. Since the ostensibly
focused image of the light source was not in fact a
point, but instead a few pixels in diameter, we took
our actual PSF to be the function which when
convolved by the focused image of the light source
most closely resembled the misfocused image of the
light source, constraining that PSF to be a disk with
integer pixel diameter.

Image Synthesis Considerations for Image Refocusing

(a) (b) (c)

Figure 2. Determining a confidence ordering over pixels: (a) the misfocused input image, (b) a map of pixel
confidence over the synthesized image, and (c) a map of neighborhood confidence. In (b) and (c), brighter values
correspond to higher confidence. The confidence maps suggest an assignment ordering that begins at regions of
high contrast and radiates outward

3.1. The Image-Scene Constraint

We first measured the performance of the image-
scene constraint alone. In this variation of the
system, the value of each pixel in the synthesized
image is the most probable candidate for that pixel as
defined by Pimage in section 2.1. This yields the
image shown in Figure 3(a).

Unsurprisingly, the performance of this variation in a
given region corresponds to the confidence of the
pixels in that region as described in section 2.3. In
regions of high confidence, where a given
neighborhood maps with high probability to a few
select neighborhoods, the synthesized image very
accurately reproduces the texture of the focused input
image. These regions of high confidence generally
correspond to regions of high contrast.

In more uniform regions, where each neighborhood
in the misfocused input image may map with roughly
uniform probability to a large number of patches in
the focused input, the texture of the synthesized
image appears noisy and does not resemble the real
texture of the object.

3.2. The Scene Texture Constraint

Figure 3(b) shows the results of incorporating the
scene texture constraint into the variation of the
previous subsection. In this variation, we calculated
Ptexture for each of the top 20 candidates given by the
image-scene constraint. We then selected the value v
in the candidates that maximized

!

Pimage (v)Ptexture (v).

We performed this selection for each pixel of the
synthesized image in scanline order, using a causal
neighborhood in calculating Ptexture.

The new constraint succeeds in eliminating the noisy
texture that appeared in the low-contrast regions of
the synthesized image when using the image-scene
constraint only. However, the smooth, grain-free
texture that it tends to render instead is also not
correct. Furthermore, textures and colors appear to
“bleed” out of their correct regions. In some cases,
this causes small features on the target object to
disappear entirely.

The bleeding effect may be accounted for by the
relative weights of the constraints, which are
determined by the tuning factor λ used in calculating
Pimage and Ptexture. In a scanline ordering, excessive
weight on the scene texture constraint causes textures
currently established along the scanline to be
propagated in the direction of the scan farther than
should be allowed by the image-scene constraint.
However, we do not experiment with different
weights in this paper. Instead, in the next section, we
consider how the bleeding effect may be mitigated by
assigning pixels in order of confidence.

Image Synthesis Considerations for Image Refocusing

(a) (b) (c)

Figure 3. Performance of variations of the system: (a) image-scene constraint only, (b) incorporating the scene
texture constraint with scanline-order assignment, and (c) incorporating confidence-order assignment.

(a) (b)

Figure 4. Performance of the system using both constraints and confidence order assignment: (a) the misfocused
input image, and (b) the synthesized image.

Image Synthesis Considerations for Image Refocusing

(a)

(b)

Figure 5. Performance of our best system given non-ideal inputs. Given the focused input image (a) with perturbed
view of the target object, the system produces the synthesized image (b).

3.3 Confidence-Order Assignment

Figure 3(c) shows the results of altering the variation
of the previous subsection to assign pixels in
confidence order as described in section 2.3.

The new assignment order largely mitigates the
texture bleeding introduced by the previous variation.
While some textures do encroach into other regions
slightly, no features of the object are seen to
disappear entirely as with scanline ordering. The
textures generated by this variation also resemble the
true texture of the object more closely than those
generated by the previous variation.

Figure 4 shows another image refocused using this
variation of the system.

4. Evaluating the System

We have demonstrated in the previous section that
the variation of our system that incorporates both the
image-scene constraint and the scene texture
constraint and assigns the synthesized pixels in
confidence order produces the most desirable results

given an ideal focused input image. In this section,
we evaluate the performance of that best system for
non-ideal inputs. Specifically, whereas our focused
input image in the previous section was taken from
precisely the same view as the misfocused input
image, we now consider the case of a focused input
taken from a perturbed view. The results of using
such an input with the misfocused images of the
previous section are shown in Figure 5.

The performance of our system under these
conditions clearly falls short of the performance on
ideal inputs as some regions of the synthesized
regions take on incorrect textures while others take
on incorrect overall color as well. As a result, some
features of the object disappear. These results
suggest that our method for mapping neighborhoods
in the misfocused image to neighborhoods in the
blurred focused image is not robust to changes in the
viewpoint of the focused image. This may result in a
poor selection of candidate values for the synthesized
pixels, such that no good image exists in the space of
candidate images, and the performance of the system
as a whole is thusly limited.

Image Synthesis Considerations for Image Refocusing

5. Conclusions and Future Work

We have stated it as the goal of this paper to
demonstrate a method for image refocusing which is
both more generally applicable than deconvolution
algorithms and better able to take advantage of
additional information about high-frequency detail.

Our method indeed achieves the latter in the broadest
sense, as we have demonstrated the ability of our
system to replicate the high-frequency details of
focused input images convincingly in some regions
of synthesized images. Traditional deconvolution
algorithms do not incorporate focused images at all.
We have also seen, however, that the system is not
able to use focused images effectively that are not
taken from the same view as the misfocused image.
Thus the utility of our refocusing method is currently
limited to situations where we already have a suitable
focused image from the desired view, which makes it
less applicable than most deconvolution algorithms.

We stand to improve the performance and generality
of the method by exploring various parameters of the
method that this paper does not, including
neighborhood size, our choice of pixel confidence
metric, and the relative weights of our constraints.
However, the computational cost of running our
system makes it difficult to experiment with all of the
parameters we would like to. Our current best
method takes 5 to 10 hours to synthesize a 300 x 300
image using 20 candidate values per pixel on a vine
box. We therefore propose future work that aims at
increasing the efficiency of our system.

5.1. Intelligent Candidate Selection

In the experiments presented in this paper, we
considered only the 20 most probable candidates
generated by the image-scene constraint as possible
values for the pixel. This is a very small fraction of
the total number of candidates, which may be as great
as the number of pixels in the focused input images.
Moreover, when our confidence in the pixel is low,
values outside of the top 20 may have only
marginally lower probabilities than those that make
the cut. While it is necessary to restrict the number
of candidates we consider to keep the system
computationally feasible, there may be a more
intelligent approach to selecting those candidates.

Such an approach might address the fact that our
current system considers each value in RGB space as
a separate candidate. Thus if we have a candidate
value (0, 0, 1) with probability 0.3, a candidate (0, 1,
0) with probability 0.3, and a candidate (255, 255,

255) with probability 0.4, then “white” is regarded as
the most probable candidate, whereas the true value
is probably very close to “black”.

A more sensible procedure for candidate selection
might, for example, perform k-means clustering in
RGB space on the entire set of candidate values, with
each value weighted by its probability. One could set
k = 20 and take the final means as candidate values.

5.2. Accelerated Neighborhood Search

The run time of our system is dominated by
neighborhood searches, which are nearest-neighbor
searches in 75 dimensions (5 x 5 patches in 3
channels). Our current implementation is exhaustive
linear search through the patch library, which runs in
time O(N) on a library of N patches. However,
approximate nearest-neighbor algorithms exist which
after a reasonable pre-processing step can perform
this search in time O(log N), and which have
performed satisfactorily in texture synthesis [4] and
image synthesis [2] .

The obstacle to implementing our current system on
top of these algorithms during experimentation was
that we required the ability to locate the nearest
neighbor in an arbitrary subset of the 75 dimensions,
in order to support arbitrarily shaped causal
neighborhoods. Now that we have identified a best
system that uses symmetrical neighborhoods, any
ANN or vector quantization algorithm may be used
for neighborhood search.

Acknowledgements

I would like to thank Marc Levoy for providing and
providing assistance with photography equipment
and props for this project, and Hendrik Lensch for his
comments and suggestions on my initial proposal.

References

[1] W. T. Cathey and E. R. Dowski, “New paradigm

for imaging systems,” Appl. Opt. 41, 6080-
6092.

[2] A. Fitzgibbon, Y. Wexler, and A. Zisserman,

“Image-Based Rendering Using Image-
Based Priors,”

[3] W. T. Freeman, E. C. Pasztor, and O. T.

Carmichael, “Learning Low-Level Vision,”
IJCV 40, 25-47.

Image Synthesis Considerations for Image Refocusing

[4] L. Wei and M. Levoy, “Fast Texture Synthesis
using Tree-structured Vector Quantization,”
Proc. SIGGRAPH 2000.

[5] L. Wei and M. Levoy, “Texture Synthesis over

Arbitrary Manifold Surfaces,” Proc.
SIGGRAPH 2001.

[6] Y. Wexler, E. Shechtman, and M. Irani, “Space-

Time Video Completion,” Computer Vision
and Pattern Recognition 1, 120-127.

